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Introduction



Background and motivation 2

• (Extreme) environmental events pose an increasing challenge to the field of mortality
modelling.

• Epidemiological studies have unveiled (short-term) associations between mortality and

- temperature, e.g., Keatinge et al. [2000] and Basu and Samet [2002],

- cold spells and heat waves, e.g., Braga et al. [2001] and Pattenden et al. [2003],

- air pollution, e.g., Pascal et al. [2014] for PM10 and PM2.5 and Orellano et al. [2020] for
ozone and nitrogen dioxide.

Various methodologies have been proposed:

- Poisson regression models, e.g., Armstrong [2006] and Braga et al. [2002],

- Distributed Lag (Non-Linear) Models, e.g., Schwartz [2000] and Gasparrini et al. [2010],

- Extreme value analysis, e.g., Li and Tang [2022].
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Learning outcomes 3

In this session, we will:

• try to explain weekly death counts across European regions

• with a baseline mortality model (e.g., alike EuroMoMo)

• combined with a (high-dimensional) set of weather and air pollution features

• constructed from publicly available data sources (e.g., Eurostat, CDS, CAMS, NASA’s
EarthData).
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Machine learning and mortality modelling 5
We will make use of machine learning
methods to find associations between
mortality and environmental data:

• death counts D
(r)
x ,t,w under Poisson

assumption, in the presence of risk

factors or covariates z (r)
x ,t,w

• with techniques such as:

- Random Forests (RFs)

- Gradient Boosting Machines (GBM,
XGBoost, LightGBM, ...)

- Neural Networks (CANNs, ANNs,
RNNs, ...).

Picture taken from Machine learning for everyone. In simple words. With real-world examples. Yes, again.
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Research goals 6

• Identify the primary environmental factors contributing to the estimation of mortality
deviations from the baseline.

• Investigate the marginal impact of an environmental factor on deviations from the
mortality baseline.

• Study how environmental factors interact when modelling mortality rates. Are there
harvesting effects present?

• Demonstrate how to make short-term mortality projections with the model.
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Death counts 7

Eurostat: deaths by week, sex, 5-year age group
and NUTS 3 region from 20 European countries
throughout the years 2013-2019 (> 500 regions).

Focus on old age group 65+.

Seasonal trend:
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Weather data 8

E-OBS land-only, gridded meteorological data for
Europe from the Copernicus Climate Data Store.

Daily, high-resolution gridded dataset, defined on
a grid with a spatial resolution of 0.10◦ (≈ 9 km).

Weather factors:

Tmax: daily maximum temperature.

Tmin: daily minimum temperature.

Hum: daily average relative humidity.

Rain: total daily precipitation.

Wind: daily average wind speed.
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Weather data 9
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Air pollution data 10

CAMS European air quality reanalyses dataset from the
Copernicus Atmosphere Monitoring Service (land +
sea).

Hourly, high-resolution air quality reanalyses, defined
on a grid with a spatial resolution of 0.10◦ (≈ 9 km).

Air pollutants (µg/m3):

O3: hourly ozone levels.

NO2: hourly nitrogen dioxide levels.

PM10: hourly particular matter (10 microns wide).

PM2.5: hourly particular matter (2.5 microns wide).
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Weekly, region-specific baseline mortality model 11

A weekly, region-specific baseline mortality model to
capture overall seasonal trends across all regions.

Incorporate seasonality through Fourier terms
Serfling [1963]:

D
(r)
t,w ∼ Poisson

(
E

(r)
t,w · µ(r)

t,w

)
,

logµ
(r)
t,w = β

(r)
0 + β

(r)
1 t + β

(r)
2 sin

(
2πw

52

)
+ β

(r)
3 cos

(
2πw

52

)
+

β
(r)
4 sin

(
2πw

26

)
+ β

(r)
5 cos

(
2πw

26

)
.

Region-specific population exposures E
(r)
t,w from

Eurostat.

Estimated baseline death counts: b̂
(r)
t,w := E

(r)
t,w · µ̂(r)

t,w .
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Modelling deviations from the baseline model 12

Explain observed deviations from the baseline deaths
using region-specific environmental features.

Fix estimated baseline deaths and impose
distributional assumption:

D
(r)
t,w ∼ Poisson

(
b̂
(r)
t,w ϕ

(r)
t,w

)
,

ϕ
(r)
t,w = f

(
long(r), lat(r), seasont,w ,

e(r)
t,w , l

1
(
e(r)
t,w

)
, . . . , l s

(
e(r)
t,w

))
.

f (·) is a selected predictive modelling technique.

Choice for machine learning model to identify
non-linear relationships and potential interaction
effects among environmental features.

Feature engineering
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Calibrating the baseline model 13

Fit one Poisson GLM jointly on all regions,
and add a penalty term to obtain smooth
variations in the estimated parameters β̂

(r)
p

across neighbouring regions:

β̂ = argmin
β

(
−lP(β) +

5∑
p=0

λpβ
T
p Sβp

)
,

where:

- β: parameter vector,

- lP(β): Poisson log-likelihood,

- βT
p Sβp: quadratic penalty term,

- λp: smoothing or penalty parameter.

Example (5 Spanish NUTS 3 regions):

ES111

ES112

ES113

ES114

ES120

41.5°N

42.0°N

42.5°N

43.0°N

43.5°N

 8°W  7°W  6°W  5°W  4°W

Penalty matrix S :



ES111 ES112 ES113 ES114 ES120

ES111 2 −1 0 −1 0

ES112 −1 4 −1 −1 −1

ES113 0 −1 2 −1 0

ES114 −1 −1 −1 3 0

ES120 0 −1 0 0 1


.
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Calibrating the mortality deviations via gradient boosting 14

Picture taken from Machine learning for everyone. In simple words. With real-world examples. Yes, again.

Applied Statistics Workshop ISBA Model calibration

https://vas3k.com/blog/machine_learning/


Parameter configurations 15
XGBoost: flexible and efficient implementation of
gradient boosting.

Tuning parameters:

nrounds: number of boosting iterations.

eta: learning rate.

max depth: the maximum depth of a tree.

subsample: subsample ratio of the training data.

colsample bytree: subsample ratio of the features.

Parameter tuning with T-fold cross-validation.

Calibrate XGBoost model on entire training data with
optimal parameter configuration.

Interpretation tools to gain insights: VIP, ALE.

Time0 1 2 3 . . . T − 1 T

. . .

Fold T

...

Fold 3

Fold 2

Fold 1

Year 1 Year 2 Year 3 · · · Year T

Full data set
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Case study: feature engineering



Feature engineering 16
Motivation

Difference in spatial and temporal dimension:

- deaths data: weekly, NUTS 3 scale.

- environmental data: hourly or daily time scale, spatial grid.

Goal of feature engineering:

- convert the temporal and spatial dimensions of the environmental data into
aggregated features on a weekly, NUTS 3 scale.

- create features that measure deviations from baseline conditions from environmental
data to explain excess or deficit mortality.

Applied Statistics Workshop ISBA Case study: feature engineering
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Flow chart 17
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Daily aggregation 18

Consider an air pollution factor and denote its concentration at hour h of day d in week w of

year t and located at longitude-latitude coordinates (long,lat) as x
(long,lat)
t,w ,d ,h .

Compute the daily minimum, average, and maximum concentrations of the air pollutant,
measured at the coordinates (long,lat) as:

∧
x
(long,lat)

t,w ,d = min
{
x
(long,lat)
t,w ,d ,h

∣∣ h = 0, 1, ..., 23
}

x
(long,lat)
t,w ,d = avg

{
x
(long,lat)
t,w ,d ,h

∣∣ h = 0, 1, ..., 23
}

∨
x
(long,lat)

t,w ,d = max
{
x
(long,lat)
t,w ,d ,h

∣∣ h = 0, 1, ..., 23
}
.

Weather factors already available at the daily level (no need for daily aggregation).
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x
(long,lat)
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{
x
(long,lat)
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∣∣ h = 0, 1, ..., 23
}
.

Weather factors already available at the daily level (no need for daily aggregation).
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Spatial aggregation 19

x̃
(long,lat)
t,w ,d : daily level of a specific
environmental feature at coordinates (long,
lat) for year t, week w , and day d .

Construct feature on NUTS 3 scale:

x̃
(r)
t,w ,d =

∑
(long,lat)∈I1(r)

ω(long,lat) · x̃
(long,lat)
t,w ,d ,

where:

- ω(long,lat): population weights using
gridded population data from the
Socioeconomic Data and Applications
Center,

- I1(r): feature grid restricted to region r .

43.85°N

43.95°N

44.05°N

7.55°E7.65°E7.75°E7.85°E7.95°E8.05°E8.15°E

Feature grid I1(r) Population grid I2(r)

ITC31: Imperia
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Extreme environmental indices 20

Aim: to capture the effects of extreme environmental conditions on mortality baseline
deviations.

Calculate region-specific 5% and 95% quantiles of the daily historical temperature or air
pollution observations over the years 2013-2019.

Define extreme high temperature index (hot-day index):

T.ind
(r ,95%)
t,w ,d = 1

{
Tmax

(r)
t,w ,d ≥ q

(r ,95%)
Tmax

}
+1

{
Tavg

(r)
t,w ,d ≥ q

(r ,95%)
Tavg

}
+1

{
Tmin

(r)
t,w ,d ≥ q

(r ,95%)
Tmin

}
.

Index values: 0-3, indicating the severity of hot days.

Similar extreme indices are created for the remaining daily weather and air pollution factors.
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Environmental anomalies 21

Create features that quantify deviations from typical,
baseline conditions for each day throughout the year.

Robust linear regression to capture baseline:

x̃
(r)
t,w,d = α

(r)
0 + α

(r)
1 sin

(
2πw

365.25

)
+ α

(r)
2 cos

(
2πw

365.25

)
+ ϵ

(r)
t,w,d ,

In the paper, we work with excesses or deviations from
the baseline (anomalies):

x̃
(r)
t,w ,d − ˆ̃x

(r)
t,w ,d
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Environmental anomalies 21
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Weekly aggregation 22

Up to now: feature anomalies on daily time scale.

Various weekly aggregation techniques for each region,
e.g., for temperature:

- weekly average of daily minimum/maximum
temperature anomalies,

- weekly average of daily hot-day index.

Similar weekly aggregation techniques for remaining
environmental anomalies and extreme environmental
indices.
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Up to now: feature anomalies on daily time scale.
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Weekly aggregation 22

Up to now: feature anomalies on daily time scale.

Various weekly aggregation techniques for each region,
e.g., for temperature:

- weekly average of daily minimum/maximum
temperature anomalies,

- weekly average of daily hot-day index.
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Weekly aggregation 22

Up to now: feature anomalies on daily time scale.

Various weekly aggregation techniques for each region,
e.g., for temperature:

- weekly average of daily minimum/maximum
temperature anomalies,

- weekly average of daily hot-day index.
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Weekly aggregation 22

Up to now: feature anomalies on daily time scale.

Various weekly aggregation techniques for each region,
e.g., for temperature:

- weekly average of daily minimum/maximum
temperature anomalies,

- weekly average of daily hot-day index.

Similar weekly aggregation techniques for remaining
environmental anomalies and extreme environmental
indices.
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Case study: calibration results



Baseline model Machine learning model 23
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Input features: longitude-latitude
coordinates, season, (one-week lagged)
environmental anomalies and extreme
indices.

Tuning by 7-fold cross validation over
the years 2013-2019 using an extensive
tuning grid.

Tuning parameters: nrounds (490), eta
(0.01), min child weight (1000),
max.depth (7), subsample (0.75),
colsample bytree (0.50).
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Insights in the machine-learning model



In-sample fit and model performance 24

Observed and estimated mortality rates (baseline + XGBoost):
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In-sample fit and model performance 25

Residuals of the estimated weekly mortality rates (baseline + XGBoost):
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Feature importance 26

Machine learning techniques perform automatic feature selection.

Which features do significantly contribute to the predictions?

We calculate the feature importance of each feature Xl as:

Vimp(Xl) =
1

nrounds

nrounds∑
n=1

∆Ln(Xl),

with ∆Ln(Xl) the total reduction in the Poisson loss function, caused by splits associated to
feature Xl in the tree built during iteration n of the XGBoost algorithm.

Features with a high importance appear often and high in the tree.
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Feature importance 27
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We conduct some additional analyses in our paper ’The short-term association between
environmental variables and mortality: evidence from Europe’ ([link], under revision at
JRSS-A):

1. We compared our method against two other tree-based approaches: random forest and
LightGBM. The results were in line with XGBoost, which strengthens the robustness of our
findings.

2. We highlight the advantage of incorporating the baseline number of death counts as an
offset in the model. It makes our predictions more stable, robust, and interpretable,
especially regarding statements about excess mortality.
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