
The short-term association between environmental variables
and mortality: evidence from Europe
Tutorial session

Jens Robben, Katrien Antonio and Torsten Kleinow
Applied Statistics Workshop ISBA (UCLouvain) | April 18, 2025

Prologue

Introduction

Workshop
https://jensrobben.github.io/Workshop-LLN/

The GitHub page where slides, R code and data sets are available.

Authors of the paper

 Jens Robben Katrien Antonio Torsten Kleinow

3 / 56

https://jensrobben.github.io/Workshop-LLN/
https://jensrobben.github.io/
mailto:j.robben@uva.nl
mailto:j.robben@uva.nl
https://katrienantonio.github.io/
mailto:katrien.antonio@kuleuven.be
mailto:katrien.antonio@kuleuven.be
https://www.uva.nl/profiel/k/l/t.kleinow/t.kleinow.html
mailto:t.kleinow@uva.nl
mailto:t.kleinow@uva.nl

Goals of the tutorial session

In this tutorial session you will learn how to:

download and visualize the NUTS 2 regions in Belgium

download and illustrate weekly mortality and weather
data for Belgium

calibrate a weekly mortality baseline model

use a machine learning model to associate deviations
from the mortality baseline with weather data

construct in-sample mortality predictions.

The tutorial is a simplified version of our paper

Outline of the workshop:

NUTS 2 regions in Belgium

Download and import mortality data

Download and import weather data

Weekly mortality baseline model

Modelling deviations from the mortality baseline

Results

The full working paper is available on arXiv:
https://arxiv.org/abs/2405.18020.

Corresponding R code is available on GitHub:
https://github.com/jensrobben/EnvVar-Mortality-Europe.

Goals of the tutorial session

5 / 56

https://arxiv.org/abs/2405.18020
https://github.com/jensrobben/EnvVar-Mortality-Europe

NUTS 2 regions in Belgium

NUTS 2 regions in Belgium
We focus on mortality data in NUTS 2 regions in Belgium. NUTS 2 is the second most detailed level in the Nomenclature of
Territorial Units for Statistics (see here).

We read the NUTS level shapefile using the read_sf function from the {sf} package. This shapefile contains geospatial data for
all NUTS regions in Europe. We have pre-downloaded it from Eurostat and stored it in our GitHub repository.

shapef <- read_sf('../data/shapefile/NUTS_RG_01M_2021_4326.shp')

We then filter the shapefile to include only NUTS 2 level regions (LEVL_CODE == 2) in Belgium (CNTR_CODE == 'BE') using the
filter function from the {dplyr} package, and arrange the data by NUTS 2 code.

shapef <- shapef %>%
 dplyr::filter(LEVL_CODE == 2, CNTR_CODE == "BE") %>%
 arrange(NUTS_ID)

We extract the NAME_LATN attribute from the shapefile and find that the Belgian NUTS 2 regions correspond to the 10 provinces
in Belgium and Brussels.

tail(shapef$NAME_LATN)
[1] "Prov. West-Vlaanderen" "Prov. Brabant Wallon" "Prov. Hainaut"
[4] "Prov. Liège" "Prov. Luxembourg (BE)" "Prov. Namur" 7 / 56

https://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics
https://ec.europa.eu/eurostat/web/gisco/geodata/statistical-units/territorial-units-statistics

The geometry attribute stores the geographic data for the Belgian provinces (+ Brussels). Let's examine the geometry of the
first region in the shapefile:

shapef[1,]$geometry
Geometry set for 1 feature
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4.244969 ymin: 50.76425 xmax: 4.480477 ymax: 50.9136
Geodetic CRS: WGS 84

The geometry type MULTIPOLYGON indicates that the shapefile is made up of multiple polygons outlining the boundaries of
the Belgian provinces.

The dimension XY indicates that the polygons are defined in two dimensions (longitude and latitude).

The bounding box (xmin , ymin , xmax , ymax) reflects the rectangular area of (long, lat) coordinates encompassing the
region.

The geodetic CRS WGS 84 is the coordinate reference system (CRS) used for this shapefile.

8 / 56

We can visualize the Belgian NUTS 2 regions (provinces) using ggplot . The key function for plotting geographical data is the
layer geom_sf from the {ggplot2} package. This function uses the geometry column from our shapefile. The fill = NUTS_ID
aesthetic fills each NUTS 2 region with a different colour.

ggplot(shapef) +
 geom_sf(aes(fill = NUTS_ID, geometry = geometry))

The above code provides a basic plot. We can enhance it by specifying a custom color palette.

colours <- distinctColorPalette(k = 11)

load.fontawesome()
location <- fontawesome(c('fa-map-marker'))

ggplot(shapef) +
 geom_sf(aes(fill = NUTS_ID,
 geometry = geometry), col = 'gray70') +
 geom_text(aes(x = 4.6118, y = 50.6666, label = location),
 family = 'fontawesome-webfont', vjust = 0.05,
 data = shapef[1,], size = 7) +
 scale_fill_manual(name = 'Regions', values = colours) +
 theme_bw(base_size = 15) + xlab('') + ylab('') +
 ggtitle("NUTS 2 regions (provinces) Belgium")

9 / 56

10 / 56

Download and import mortality data

Download and import mortality data
We do a live download using the function get_eurostat from the {eurostat} package to retrieve Belgian death counts by week
(from 2000 on), sex, 5-year age group and NUTS 2 region from Eurostat.

Download weekly death counts from Eurostat (approx. 1 min)
dxtw.raw <- get_eurostat(id = 'demo_r_mwk2_05', time_format = 'raw',
 cache = FALSE, filters = list(geo = shapef$NUTS_ID))

id refers to the unique identifier of the data set we download (see here)
time_format = 'raw' specifies we want to preserve the original date object
cache = FALSE avoids caching and speeds up the running process
filters limits the data to the NUTS 2 Belgian regions.

If you encounter issues with the live download, we have pre-downloaded this weekly mortality data set, and made it available
in the GitHub repository. You can load this R object as follows:

dxtw.raw <- readRDS('../data/eurostat/dxtw_BE_NUTS2.rds')

We set appropriate column names using the colnames function:

colnames(dxtw.raw) <- c('Freq', 'Age', 'Sex', 'Unit', 'Region', 'Time', 'Deaths')
12 / 56

https://ec.europa.eu/eurostat/databrowser/view/demo_r_mwk2_05/default/table?lang=en

We visualize an extract of the downloaded Eurostat data:

head(dxtw.raw)

Freq Age Sex Unit Region Time Deaths

W TOTAL T NR BE10 2000-W01 298

W TOTAL T NR BE10 2000-W02 260

W TOTAL T NR BE10 2000-W03 281

W TOTAL T NR BE10 2000-W04 242

W TOTAL T NR BE10 2000-W05 245

W TOTAL T NR BE10 2000-W06 197

13 / 56

dxtw.BE <- dxtw.raw %>%
 dplyr::filter(Age == 'TOTAL', Sex == 'T') %>%
 mutate(ISOYear = as.integer(substr(Time, 1, 4)),
 ISOWeek = as.integer(substr(Time, 7, 8)))

We filter the mortality data set dxtw.raw on the total age
class (Age == 'TOTAL') and unisex data (Sex == 'T') using
the filter function from the {dplyr} package. Using the
function mutate , we create two new columns, ISOYear and
ISOWeek . Hereto we extract the year (digits 1-4) and week
(digits 7-8) from the Time column in dxtw.raw using the
function substr .

dxtw.BE <- dxtw.BE %>%
 dplyr::filter(ISOYear <= 2019) %>%
 select(c('ISOYear', 'ISOWeek', 'Region', 'Deaths'))

To exclude the COVID-19 pandemic, we filter the data up to
ISO-year 2019. We retain only the relevant columns: ISO-
year , ISO-week , Region , and Deaths using the select
function from {dplyr}.

Add date
wdate <- ISOweek2date(sprintf("%d-W%02d-%d",
 dxtw.BE$ISOYear,
 dxtw.BE$ISOWeek, 1))
dxtw.BE <- dxtw.BE %>%
 mutate('Date' = wdate)

Next, we use the ISOweek2date function from the
{ISOweek} package to create a new column Date ,
representing the start date of each ISO-week.

This concludes the construction of a data set with weekly
deaths for Belgium, stored in dxtw.BE . On to the
exposures!

14 / 56

Your turn

Q: Visualize the evolution of the weekly death counts in the NUTS 2 region that includes
Louvain-la-Neuve.

Select region encompassing Louvain-la-Neuve
region <- ...

Filter the data for the specified region
dxtw.BW <- ... %>% filter(...)

Create the plot
ggplot(...) +
 geom_line(aes(x = ..., y = ...), colour = RCLRbg) +
 xlab('Date') + ylab('Death counts') +
 theme_bw(base_size = 15)

15 / 56

Your turn

A: Louvain-la-Neuve is located in the province Brabant Wallon. The NUTS 2 code for this
province is BE31, which can be found in the shapef object.

Select region encompassing Brabant Wallon
region <- 'BE31'

Filter the data for the specified region
dxtw.BW <- dxtw.BE %>% filter(Region == region)

Create the plot
ggplot(dxtw.BW) +
 geom_line(aes(x = Date, y = Deaths), colour = RCLRbg) +
 xlab('Date') + ylab('Death counts') +
 theme_bw(base_size = 15)

16 / 56

Your turn

A: Louvain-la-Neuve is located in the province Brabant Wallon. The NUTS 2 code for this
province is BE31, which can be found in the shapef object.

17 / 56

Pxt.raw <- get_eurostat(id = 'demo_r_d2jan',
 time_format = 'raw',
 cache = FALSE,
 filters =
 list(geo =
 shapef$NUTS_ID))

colnames(Pxt.raw) <- c('Freq', 'Unit', 'Sex', 'Age',
 'Region', 'Time', 'Pop')

We perform a live download (again) using the
get_eurostat function to retrieve population counts on
January 1st, categorized by age, sex, and NUTS 2 region. The
function's parameters are similar to those used for
downloading weekly death counts, with the main difference
being the identifier: demo_r_d2jan (see here).

We specify the column names using the function colnames .

Pxt.raw <-
 readRDS('../data/eurostat/Pxt_BE_NUTS2.rds')

If you encounter issues with the live download, we have
pre-downloaded the population count data set. You can
load this R object using the readRDS function.

Exposures

18 / 56

https://ec.europa.eu/eurostat/databrowser/view/demo_r_d2jan/default/table?lang=en

We display a sample of the data set Pxt.raw , which contains the age-specific population counts for the Belgian provinces:

head(Pxt.raw)

Freq Unit Sex Age Region Time Pop

A NR T TOTAL BE10 1990 964385

A NR T TOTAL BE10 1991 960324

A NR T TOTAL BE10 1992 951217

A NR T TOTAL BE10 1993 950339

A NR T TOTAL BE10 1994 949070

A NR T TOTAL BE10 1995 951580

19 / 56

Pxt.BE <- Pxt.raw %>%
 dplyr::filter(Age == 'TOTAL',
 Sex == 'T') %>%
 mutate(Time = as.integer(
 as.character(Time)))

We extract data from the Pxt.raw data set related to the
total age group (Age == 'TOTAL') and unisex population
(Sex == 'T') using the filter function from {dplyr}.
Additionally, we convert the Time column from its original
factor to an integer type.

Extw.BE <- Pxt.BE %>% group_by(Region) %>%
 reframe(Time, 'Expo' =
 c((Pop[-length(Time)] + Pop[-1])/2,
 Pop[length(Time)])/52.18) %>%
 dplyr::filter(Time <= 2019, Time >= 2000)

We define the annual exposure in each year , region as a
mid-year population estimate and assume a constant
weekly exposure within that year:

with the average number of weeks in a year.

Df <- dxtw.BE %>%
 left_join(Extw.BE, by = c('ISOYear' = 'Time',
 'Region' = 'Region'))

We merge the death counts dxtw.BE with the exposure
estimates Extw.BE based on the year and NUTS 2 region
using the left_join function from {dplyr}.

t r

E
(r)
t =

E
(r)
t,w = ,

P
(r)
t + P

(r)
t+1

2

E
(r)
t

52.18

52.18

20 / 56

Your turn

Q: Calculate the weekly mortality rates using the exposure estimates for the province
Antwerp. Visualize these as a function of time.

q
(r)
t,w

21 / 56

Your turn

A: We first filter the mortality data set Df (with regional, weekly death counts and exposures)
to focus only on data from the province of Antwerp (BE21). Then, we compute the mortality

rates as . Lastly, we visualize the results using {ggplot}.

Filter on province Antwerp (BE21)
Df.ANT <- Df %>% dplyr::filter(Region == 'BE21')

Construct mortality rates
Df.ANT$qtw <- 1 - exp(-Df.ANT$Deaths/Df.ANT$Expo)

Plot
ggplot(Df.ANT) +
 geom_line(aes(x = Date, y = qtw), col = RCLRbg) +
 ylab(bquote(q['t,w'])) +
 ggtitle('Antwerp') +
 theme_bw(base_size = 15)

q
(r)
t,w 1 − exp(−d

(r)
t,w/E

(r)
t,w)

22 / 56

Your turn

A: We first filter the mortality data set Df (with regional, weekly death counts and exposures)
to focus only on data from the province of Antwerp (BE21). Then, we compute the mortality

rates as . Lastly, we visualize the results using {ggplot}.q
(r)
t,w 1 − exp(−d

(r)
t,w/E

(r)
t,w)

23 / 56

Download and import weather data

Download and import weather data
In the R script eobs_data.R, we do a live download from the Copernicus Climate Data Store to retrieve daily weather factors
throughout the years 2000-2024 (WARNING! - high computational time).

These weather factors include the daily levels of the maximum temperature (tx), average temperature (tg), minimum
temperature (tn), relative humidity (hu), total precipitation amount (rr), and average wind speed (fg). The resulting data
sets are stored for you in the GitHub repository. Let's read them into our environment:

tn_NUTS2_daily <- readRDS('../data/eobs/BE_NUTS2_tn_daily.rds')
tg_NUTS2_daily <- readRDS('../data/eobs/BE_NUTS2_tg_daily.rds')
tx_NUTS2_daily <- readRDS('../data/eobs/BE_NUTS2_tx_daily.rds')
fg_NUTS2_daily <- readRDS('../data/eobs/BE_NUTS2_fg_daily.rds')
hu_NUTS2_daily <- readRDS('../data/eobs/BE_NUTS2_hu_daily.rds')
rr_NUTS2_daily <- readRDS('../data/eobs/BE_NUTS2_rr_daily.rds')

We examine the structure of one of these datasets:

head(tx_NUTS2_daily)

25 / 56

https://github.com/jensrobben/Workshop-LLN/blob/main/scripts/eobs_data.R

Date ISOYear ISOWeek Region tx

2000-01-01 1999 52 BE10 8.010

2000-01-02 1999 52 BE10 9.050

2000-01-03 2000 1 BE10 8.710

2000-01-04 2000 1 BE10 9.380

2000-01-05 2000 1 BE10 8.445

2000-01-06 2000 1 BE10 10.785

26 / 56

Your turn

Q: Illustrate the evolution of the weather factors in the province Brabant Wallon as a function
of time using {ggplot}.

27 / 56

Your turn

A: We provide the {ggplot} instructions to visualize the evolution of the minimum temperature
in the NUTS 2 region of Brabant Wallon (BE31). We start by selecting the relevant region (BE31).
Then, we filter the daily minimum temperature data set tn_NUTS2_daily for this region. Finally,
we create the plot.

region <- 'BE31' # Brabant Wallon
tn_BW_daily <- tn_NUTS2_daily %>%
 dplyr::filter(Region == region)

ggplot(tn_BW_daily) +
 geom_line(aes(x = Date, y = tn), colour = RCLRbg) +
 xlab('Date') + ylab('Minimum temperature') +
 theme_bw(base_size = 15)

28 / 56

Your turn

A: Minimum temperature.

29 / 56

Your turn

A: Average temperature.

30 / 56

Your turn

A: Maximum temperature.

31 / 56

Your turn

A: Wind speed.

32 / 56

Your turn

A: Humidity.

33 / 56

Your turn

A: Rain fall.

34 / 56

Df.weather <-
 plyr::join_all(list(tn_NUTS2_daily, tg_NUTS2_daily,
 tx_NUTS2_daily, fg_NUTS2_daily,
 hu_NUTS2_daily, rr_NUTS2_daily),
 by = c('Date', 'ISOYear', 'ISOWeek',
 'Region'))

We merge all the daily weather data sets (tn_NUTS3_daily ,
tg_NUTS3_daily , tx_NUTS3_daily , fg_NUTS3_daily ,
hu_NUTS3_daily , rr_NUTS3_daily) into one large data
frame Df.weather using the join_all function from the
{plyr} package. The merging is done based on common
columns: Date , ISOYear , ISOWeek , and Region .

Df.weather <- Df.weather %>%
 group_by(ISOYear, ISOWeek, Region) %>%
 reframe('tn' = mean(tn, na.rm = TRUE),
 'tg' = mean(tg, na.rm = TRUE),
 'tx' = mean(tx, na.rm = TRUE),
 'hu' = mean(hu, na.rm = TRUE),
 'fg' = mean(fg, na.rm = TRUE),
 'rr' = mean(rr, na.rm = TRUE))

To align with the weekly time scale of the mortality
statistics, we convert the daily weather data in Df.weather
to weekly data. This is done by grouping the data by
ISOYear , ISOWeek , and Region , and then calculating the
weekly average for each weather variable (tn , tg , tx , hu ,
fg , rr). We exclude any missing daily values in the
averaging process using the argument na.rm = TRUE .

Df <- Df %>% left_join(Df.weather) We join the mortality data set Df with the weather data set
Df.weather based on common columns (default).

From daily to weekly weather data

35 / 56

Weekly mortality baseline model

Model specifications
To model the weekly mortality baseline trend, we account for the seasonality observed in the region-specific weekly death
counts by means of sine-cosine Fourier terms, defined as:

with the frequency or number of cycles and the period of the sinusoidal terms.

We visualize the Fourier terms with a frequency of and a period of 52.18 (annual cycle).

[sin(2π x), cos(2π x)]
n∈N

,
n

T

n

T

n T

n = 1

37 / 56

We use the Serfling model specification to construct a baseline mortality model for the weekly death counts in a specific
region . This model assumes that the number of deaths random variable follows a Poisson distribution, with as mean the

weekly exposure times the weekly force of mortality :

Hereby:

which includes an intercept, an annual time trend, and Fourier-terms to capture both annual and semi-annual frequencies.

You can determine the number of seasonal terms in each region using AIC or BIC (not covered in this tutorial).

We compute these Fourier terms and add them to our mortality dataset:

Df <- Df %>%
 mutate('fsin52' = sin(2*pi*ISOWeek/52.1775),
 'fcos52' = cos(2*pi*ISOWeek/52.1775),
 'fsin26' = sin(4*pi*ISOWeek/52.1775),
 'fcos26' = cos(4*pi*ISOWeek/52.1775))

D
(r)
t,w

r

E
(r)
t,w μ

(r)
t,w

D
(r)
t,w ∼ Poisson(E (r)

t,w μ
(r)
t,w) .

logμ
(r)
t,w = β

(r)
0 + β

(r)
1 t + β

(r)
2 sin() + β

(r)
3 cos() + β

(r)
4 sin() + β

(r)
5 cos(),

2πw

52.18

2πw

52.18

2πw

26.09

2πw

26.09

38 / 56

formula <- Deaths ~ ISOYear + fsin52 +
 fcos52 + fsin26 + fcos26

We construct the formula specification with the response
variable Deaths on the one hand and the covariates
ISOYear and the Fourier terms fsin52 , fcos52 , fsin26 ,
and fcos26 on the other hand.

for(r in shapef$NUTS_ID){
 Dfr <- Df %>%
 dplyr::filter(Region == r)

 fit.r <- glm(formula, data = Dfr,
 offset = log(Dfr$Expo),
 family = poisson(link = 'log'))

 Df[which(Df$Region == r),'bDeaths'] <-
 fit.r$fitted.values
}

For each Belgian province , we filter the mortality data set
to include only data for that region, saving it as Dfr .

We then fit a Generalized Linear Model (GLM) on Dfr with
as offset the logarithm of the exposure variable, i.e.,
log(Dfr$Expo) . We specify the Poisson distribution with a
log-link using the family argument.

Finally, we add the estimated deaths to the mortality data
set Df in a new column bDeaths .

Model calibration

r

39 / 56

Your turn

Q: Calculate and illustrate the estimated baseline and observed weekly mortality rates for
Brussels and Antwerp.

40 / 56

Your turn

A: We start with Brussels (BE10). First, we filter the mortality data set Df on data for Brussels.
Then we compute the observed and estimated weekly mortality rates and plot the results.

Filter on Brussels (BE10)
Df.BR <- Df %>% dplyr::filter(Region == 'BE10')

Observed and estimated mortality rates
Df.BR$qtw.obs <- 1 - exp(-Df.BR$Deaths/Df.BR$Expo)
Df.BR$qtw.est <- 1 - exp(-Df.BR$bDeaths/Df.BR$Expo)

Plot
ggplot(Df.BR) +
 geom_line(aes(x = Date, y = qtw.obs), col = 'gray80') +
 geom_line(aes(x = Date, y = qtw.est), col = RCLRbg,
 linewidth = 0.8) +
 ylab(bquote(q['t,w'])) +
 ggtitle('Brussels') +
 theme_bw(base_size = 15)

41 / 56

Your turn

A: We start with Brussels (BE10). First, we filter the mortality data set Df on data for Brussels.
Then we compute the observed and estimated weekly mortality rates and plot the results.

42 / 56

Your turn

A: We repeat the procedure for Antwerp (BE21).

43 / 56

Modelling deviations from the mortality baseline

Model specifications
We associate deviations from the weekly mortality baseline model with region-specific weather features. We work with the
following model assumptions:

Here:

 represents the observed deaths in region during week of year

 denotes the estimated baseline deaths based on the Serfling model in region , week and year

 the set of weather features

 denotes the set of weather features, lagged by weeks

 is a machine learning model that can possibly capture non-linear associations between target and inputs, as well as
interaction effects between the input features. In this tutorial we work with an XGBoost model.

D
(r)
t,w ∼ Poisson(b̂

(r)

t,w ϕ
(r)
t,w)

ϕ
(r)
t,w = f (c

(r)
t,w, l1 (c

(r)
t,w) , l2 (c

(r)
t,w) , . . . , ls (c

(r)
t,w)) .

D
(r)
t,w r w t

b̂
(r)

t,w r w t

c
(r)
t,w

lj(c
(r)
t,w) j

f(⋅)

45 / 56

vars <- c('tn', 'tg', 'tx',
 'hu', 'fg', 'rr')

We select the weather features of interest and save them
in the variable vars .

list.lagdf <- list()
for (v in vars){
 list.lagdf[[which(vars == v)]] <- Df %>%
 group_by(Region) %>%
 reframe(Date,
 !!paste0(v,'_l1') := lag(!!sym(v), 1),
 !!paste0(v,'_l2') := lag(!!sym(v), 2))
}

df.lag <-
 plyr::join_all(list.lagdf,
 by = c('Region', 'Date'))

Df <- Df %>%
 left_join(df.lag, by = c('Region', 'Date')) %>%
 na.omit()

For each feature in vars , we group the data frame Df
(containing mortality and weather data) by Region . We
then use the reframe function from {dplyr} to create new
columns with one-week and two-week lagged values for
each weather feature by applying the lag function from
{dplyr}. These lagged data frames are stored in the list
list.lagdf . Lastly, we merge all the lagged data frames
into a single data frame df.lag using the join_all
function from {plyr}. Note the use of !! (injection
operator) to force an early evaluation of the paste0 object
(check help("!!")).

We merge the lagged weather features with the main data
frame Df based on the columns Region and Date and
remove missing observations using na.omit .

Feature construction

46 / 56

vars.l1 <- paste0(vars, '_l1')
vars.l2 <- paste0(vars, '_l1')
vars.xgb <- c(vars, vars.l1, vars.l2)

We now create the input feature set to calibrate an
XGBoost model. This set vars.xgb stores the original
weather features and their lagged values (one-week and
two-week lags).

xgb.Df <- xgb.DMatrix(
 data = as.matrix(Df %>% select(all_of(vars.xgb))),
 label = as.matrix(Df %>% select(Deaths))
)

We convert the data frame Df into an xgb.DMatrix object,
which is required for the XGBoost model implementation in
the package {xgboost}. The data argument includes the
input features, and the label argument includes the
response variable, which is the number of observed
deaths.

setinfo(xgb.Df, "base_margin", log(Df$bDeaths))
[1] TRUE

We set the logarithm of the baseline number of deaths as
an offset using the setinfo function from the {xgboost}
package. As such, we try explaining deviations from the
mortality baseline using the selected weather features.

47 / 56

xgbcv <- xgb.cv(
 params = list(eta = 0.1,
 max_depth = 5,
 base_score = 0,
 objective = 'count:poisson'),
 data = xgb.Df,
 nfold = 10,
 early_stopping_rounds = 50,
 nrounds = 1000)

xgbfit <- xgb.train(
 params = list(eta = 0.1,
 max_depth = 5,
 base_score = 0,
 objective = 'count:poisson'),
 data = xgb.Df,
 nrounds = xgbcv$best_iteration)

Using the xgb.cv function from the {xgboost} package, we
perform nfold cross-validation to tune the number of
boosting iterations. To limit computational time, we fix the
learning rate eta at 0.1 and the maximum tree depth
max_depth at 5. The initial prediction score base_score is
set to 0 here, because we include the baseline number of
deaths as the initial prediction (via the offset). We use
Poisson regression by setting the objective to
'count:poisson' . The early_stopping_rounds argument
indicates that training will stop if performance does not
improve for 50 rounds. The maximum number of boosting
rounds is set to 1000 with nrounds .

We fit the XGBoost model on the entire training data
xgb.Df using the optimal number of boosting rounds
xgbcv$best_iteration .

Model calibration

48 / 56

Results

Your turn

Q: We retrieve the estimated deaths from the calibrated machine learning model using the
predict function. We add these to our mortality data set Df as a new column xgbDeaths .

Df$xgbDeaths <- predict(object = xgbfit, newdata = xgb.Df)

You can now visualize the observed deaths (in gray) alongside the deaths estimated by the
baseline model (in blue) and the machine learning model (in red pink) for the cantons of
Brabant Wallon and Antwerp. Complete the following {ggplot} code:

Filter on Brabant Wallon province
Df.BW <- Df %>% ...

Plot
ggplot(...) +
 geom_line(aes(x = ..., y = ..., col = 'Observed')) +
 geom_line(aes(x = ..., y = ..., col = 'XGBoost')) +
 geom_line(aes(x = ..., y = ..., col = 'Baseline')) +
 scale_colour_manual(values = c('gray80', RCLRbg, red_pink),
 breaks = c('Observed', 'Baseline', 'XGBoost'), name = '') +
 xlab('Time') + ylab('Deaths') + theme_bw(base_size = 15) + ggtitle('Brabant Wallon')

In-sample fit

50 / 56

Your turn

A: We extract the mortality data set restricted to the province Brabant Wallon (BE31) using the
filter function from the {dplyr} package. We plot the observed deaths (Deaths) in gray, the
deaths estimated by the baseline model (bDeaths) in blue, and the deaths estimated by the
machine learning model (xgbDeaths) in red pink.

Filter on Brabant Wallon province
Df.BW <- Df %>% dplyr::filter(Region == 'BE31')

Plot
ggplot(Df.BW) +
 geom_line(aes(x = Date, y = Deaths, col = 'Observed')) +
 geom_line(aes(x = Date, y = xgbDeaths, col = 'XGBoost')) +
 geom_line(aes(x = Date, y = bDeaths, col = 'Baseline')) +
 scale_colour_manual(values = c('gray80', RCLRbg, red_pink),
 breaks = c('Observed', 'Baseline', 'XGBoost'),
 name = '') +
 xlab('Time') + ylab('Deaths') + theme_bw(base_size = 15) +
 ggtitle('Brabant Wallon')

In-sample fit

51 / 56

Your turn

A:

In-sample fit

52 / 56

Your turn

A: We repeat this procedure for the province of Antwerp.

In-sample fit

53 / 56

Your turn

A: Zoom in on the years 2005-2007 and visualize the minimum, average and maximum
temperature in Brabant Wallon.

In-sample fit

54 / 56

Your turn

A: Zoom in on the years 2005-2008: July 2006 heatwave extent in Europe

In-sample fit

55 / 56

https://link.springer.com/article/10.1007/s00704-007-0370-9

Thanks!

Slides created with the R package xaringan.

Course material available via

https://jensrobben.github.io/Workshop-LLN/

56 / 56

https://github.com/yihui/xaringan
https://jensrobben.github.io/Workshop-LLN/

